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Detection and attribution of past changes in cyclone activity are
hampered by biased cyclone records due to changes in observa-
tional capabilities. Here we construct an independent record of
Atlantic tropical cyclone activity on the basis of storm surge statistics
from tide gauges. We demonstrate that the major events in our
surge index record can be attributed to landfalling tropical cyclo-
nes; these events also correspond with the most economically
damaging Atlantic cyclones. We find that warm years in general
were more active in all cyclone size ranges than cold years. The
largest cyclones are most affected by warmer conditions and we
detect a statistically significant trend in the frequency of large surge
events (roughly corresponding to tropical storm size) since 1923. In
particular, we estimate that Katrina-magnitude events have been
twice as frequent in warm years compared with cold years (P < 0.02).
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The relationship between global warming andAtlantic hurricane
activity is a controversial topic (1–3). Some have linked cyclone

activity to sea surface temperatures in the cyclogenesis region (2,
4). Other competing hypotheses include teleconnections with El
Niño–Southern Oscillation (5), North Atlantic Oscillation (6–8),
AtlanticMultidecadal Oscillation (6), tropical temperatures (3, 9),
and Sahel drought (10). Whereas others note that bias in the ob-
servational record casts doubt on any statistical power from the
relationship (11). Estimating and correcting the historical bias
hamper assessment of the links between tropical cyclone activity
and climate change (1, 2, 11, 12). Hence, any discussion of ob-
servational links or causality between global mean temperatures
and hurricane impacts relies on an unbiased estimate of hurricanes
as a function of time. There is a rising trend over the 20th century in
the observed numbers of Atlantic tropical cyclones (1, 12). How-
ever, observational methods have improved over time, especially
since the satellite era, but also after airborne observations became
commonplace; therefore some cyclones were missed in the past.
Most efforts have focused on estimating total Atlantic cyclone

activity rather than the number of land-falling storms. This is be-
cause relatively few storms make land, and small changes in storm
tracks can make a difference between a landfall and a near miss.
However, from the economic damage perspective the hurricanes
that remain far away from shore in the Atlantic are much less im-
portant than those closer to land. Hence in constructing an unbiased
record of storms we need to ask what we want to measure. The
strong winds and intense low pressure associated with tropical
cyclones generate storm surges. These storm surges are the most
harmful aspect of tropical cyclones in the current climate (1, 12),
and wherever tropical cyclones prevail they are the primary cause
of storm surges. A measure of storm surge intensity would therefore
be a good candidate measure of cyclone potential impact.
In this paper we construct such a record, using long-term tide-

gauge records from stations that have been operational for much
longer than the satellite era. These provide a consistent dataset
for examining hurricanes affecting the southeastern United
States. We also show that the index is actually dominated by
land-falling hurricanes rather than winter storms and that the

index reflects economic damage. Rather than a simple number
count of cyclones, we produce a yearly probability distribution
of storm surge intensity. We then apply a robust method of es-
timating confidence intervals to the frequency of extreme events.
Finally we show that there is a difference in frequency of cy-
clones between cold and warm years and that the effect is
strongest for the larger cyclones and hurricanes.

Results
We wish to produce a long-term, homogeneous record of storm
surge activity. Tide gauges are very suitable as they are simple
devices that have been used for hundreds of years to measure sea
level. We define the region of interest to be the western Atlantic
between 10°N and 40°N. This leaves us with the six tide gauges
from the region of interest (Fig. 1, Inset and Fig. S1) with the
main criteria that we wanted to construct a homogeneous record
that covered the great 1926 storm surge (13) and the general high
cyclone activity of the 1930s. Here, we use data from the Research
Quality Data Set (RQDS) (14). The RQDS records are extended
to the present using fast delivery data from the global sea level
observing system (14) and in a single instance (Mayport, FL)
using preliminary water-level data from the National Oceanic and
Atmospheric Administration (NOAA) Center for Operational
Oceanographic Products and Services (15). We manually screen
the data quality of the Mayport preliminary water-level data
before down-sampling. We then proceed to filter these records to
enhance the storm signal while reducing the signals due to
instrument changes, harbor development, and erroneous time
shifts in the records.
Tropical cyclones are highly localized. However, over time the

sea-level disturbance will dissipate. Daily averages increase the
storm footprint to hundreds of kilometers, which means that
relatively few tide-gauge stations provide adequate coverage. Large
storms can also produce extreme sea levels that can be seen in tide-
gauge records for several days. The potential energy stored in a sea-
level perturbation is related to the square of the vertical displace-
ment of the sea surface (16); hence we use squared day-to-day
difference in local sea level. Daily data are insensitive to harbor
development and changes in measurement methods, which can
strongly affect high-frequency variability such as significant wave
height. Day-to-day differencing further minimizes tidal influence
and slowly varying trends from, e.g., rising global sea levels (17).
We observe that summer sea level is relatively calm except for

the sporadic and obvious influence from cyclones, whereas win-
ters have a higher degree of background variability. We therefore
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remove the background annual cycle by division. This also brings
the records to a common normalized reference that removes
local effects due to, e.g., bathymetry (16). We call the multistation
daily maximum of deseasonalized squared day-to-day differences
the surge index. These processing steps are outlined in more detail
in SI Methods, section S1, Fig. S2, and Table S1.
To visualize the surge index and facilitate comparisons to other

measures of cyclone activity we have down-sampled the surge
index to annual resolution. We do this in two ways (Fig. 1 A and
B): The first way is the average value over the hurricane season

(which we here define as July–November) and the second way is
a measure of the annual frequency of extreme events above a
threshold corresponding to five to six events per year.

Discussion
In this section we demonstrate that the surge index primarily
records surge threat from tropical cyclones. We compare the new
surge index with several common measures of tropical cyclone
activity, most of them derived from the Atlantic Hurricane Da-
tabase (HURDAT; ref. 18) with wind speed corrections as de-
tailed in ref. 2: tropical cyclone counts for various magnitude
thresholds on the Saffir–Simpson scale, accumulated cyclone
energy (ACE) (19), net tropical cyclone activity (NTC) (20), and
power dissipation index (PDI). We also calculate several of these
measures restricted to storms making US landfall. These we de-
note with a US prefix (e.g., US-ACE). Additionally, we compare
the surge index with the “PL05” normalized hurricane damage
(NHD) from Pielke et al. (21).
As an example we show the daily surge index compared with

ACE and US-ACE for the very active 2005 season (Fig. 2). The
ACE is traditionally defined as an annually integrated value. Here,
we have made the natural extension of this definition to a daily in-
tegrated value. It is clear that the surge index is particularly sensitive
to hurricanes making landfall, which supports the interpretation
that the surge index is closely related to the actual threat.
Table 1 shows the correlation of the seasonal surge index with

other measures. The surge index is positively correlated with all
of the comparison measures. The best correlations are found
with measures that emphasize intensity (e.g., NTC, ACE, and
PDI) and measures that are restricted to US land-falling storms
only. Table 1 also shows that low-frequency correlation tends to
be at a higher level than the year-to-year correlation. This is to
be expected given that there are low-frequency driving agents
related to various climate forcings (4, 8). One notable exception
is NHD, which shows poor low-frequency correlations. However,
NHD has been subjected to extensive corrections for inflation
and changes in societal conditions over time (21). These cor-
rections affect primarily low-frequency signals and trends and we
interpret the poor low-frequency correlation with surge index to
be due to a substantial remaining bias in NHD. We therefore
consider the low-frequency variability (i.e., trend) of NHD suspect.
We note, however, that the surge index does capture the high-fre-
quency variability in NHD, thus supporting the interpretation that it
is truly a proxy for cyclone threat. It is conceivable that the surge
index could be used to correct for the remaining bias in NHD.
In Table S2 we show the surge index of the 50 greatest events.

The surge index ranking reflects the impact at the specific tide-
gauge locations and therefore should not be interpreted as
a storm ranking. The purpose of this list is to demonstrate that
the surge index truly captures cyclone activity, rather than pro-
vide a storm severity ranking. A few events outside the hurricane
season cannot be attributed to tropical cyclones. Several of these
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Fig. 1. (A) Average surge index over the cyclone season. (B) Observed fre-
quency of surge events with surge index greater than 10 units/y (surge index >
10 units) and linear trend (black). (C) Accumulated cyclone energy for US
landfalling storms. (D) Annual average global mean surface temperature
anomaly from GISTEMP (23), shaded to show warmer and colder than median
temperatures. Thick lines in A, B, and C are 5-y moving averages. Inset in
A shows locations of the six tide gauges used in the construction of the
surge index.
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Fig. 2. Comparison of the surge index (blue) with ACE (light red) and US-ACE (red) for the 2005 hurricane season.
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events, however, show up in other records of extreme weather;
e.g., the large March 13, 1993 event is commonly known as the
1993 superstorm (22).
The surge index can be interpreted as a potential threat to

infrastructure. A large surge does not necessarily mean that the
associated storm caused a lot of damage. It depends on the de-
tailed conditions of when and where the storm hit the coast. We
argue that the surge index is a more direct measure of threat
than most of the HURDAT-derived measures. Large surge index
values are a manifestation of what the storm is able to do exactly
at the time of landfall. Other measures, such as integrated kinetic
energy (IKE) (24), have been proposed as proxies for the de-
structive potential. It is beyond the scope of this study to make a
detailed comparison with IKE, which relies on high-quality wind
data that are not available for all storms. However, the surge
index can be used as a method of testing how IKE-type measures
reflect actual surge data. For such a comparison it would be
possible to include many more additional tide-gauge records as
the time frames for high-quality wind data are relatively short.
To estimate the trend in landfalling storm counts, we count the

number of large surge events greater than 10 units in 1 y, which is
roughly equivalent to hurricane categories 0–5. This threshold
was chosen as a compromise between looking at large events and
having sufficiently many events to obtain robust statistics. Since
1923 the average number of events crossing this threshold has
been 5.4/y, which would increase to 9.5 events/y by 2100 were the
best-fitting trend to continue (Fig. 1B). This trend is statistically
significant against a null hypothesis with the same power spectrum
as the input series (P < 0.02). We do not find a statistically signif-
icant trend in the seasonal average surge index (Fig. 1A), which by
construction emphasizes the very largest events. This is because the
strongest events are rare, and hence a longer time series is needed
before a robust trend emerges. The same issues make it more dif-
ficult to detect trends in counts of major landfalling hurricanes (or
PDI or ACE), compared with counts of all tropical storms.
As we are primarily interested in extreme events, it is con-

structive to examine the changes to the entire surge index proba-
bility density function (pdf). We split the surge index into cold and
warm years (Fig. 1D) and compare the derived return periods
(Methods) for the two subsets (Fig. 3). It is clear that events with
annual return periods (reciprocal frequency) are significantly
more intense in warm years than in cold years. We can therefore

conclude that the surge index distribution is not stationary. For
rarer events (with return periods greater than 1 y) the confidence
intervals from the warm and cold years overlap, which makes it
difficult to visually assess whether the difference is significant.
We address this by fitting generalized extreme value (GEV)
distributions (Methods) to the cold and warm year data sepa-
rately in Fig. 3. It is evident that the GEV distribution fits the
surge index data, but that there are significant differences be-
tween the GEV parameters describing the warm and cold years.
Both GEV fits give return periods that are consistent with the 9-
to 30-y period for US coastal Katrina-magnitude events esti-
mated from HURDAT (25). We observe that warm years are
more active than cold years and that the relative difference in
frequency is greatest for the most extreme events. The separate
GEV fits suggest that events of Katrina magnitude are approxi-
mately two times more frequent in the warm years than in cooler

Table 1. Correlations between July–November surge index and other measures of cyclone activity

Series Period of overlap Correlation full period Correlation 1950–2005 High-frequency correlation Low-frequency correlation

Cat 0–5 1923–2008 0.56 0.65 0.51 0.64
Cat 1–5 1923–2008 0.55 0.57 0.54 0.56
Cat 2–5 1923–2008 0.50 0.42 0.51 0.50
Cat 3–5 1923–2008 0.51 0.47 0.42 0.58
Cat 4–5 1923–2008 0.53 0.50 0.46 0.62
Cat 5 1923–2008 0.38 0.61 0.41 0.48
US cat 0–5 1923–2008 0.54 0.55 0.55 0.56
US cat 1–5 1923–2008 0.57 0.57 0.55 0.67
US cat 2–5 1923–2008 0.55 0.56 0.51 0.66
US cat 3–5 1923–2008 0.57 0.60 0.55 0.67
US cat 4–5 1923–2008 0.61 0.70 0.57 0.74
US cat 5 1923–2008 0.38 0.62 0.38 0.46
ACE 1923–2008 0.61 0.58 0.54 0.72
US ACE 1923–2008 0.58 0.58 0.51 0.77
NTC 1923–2006 0.58 0.55 0.48 0.54
PDI 1923–2008 0.60 0.58 0.53 0.73
US PDI 1923–2008 0.58 0.61 0.52 0.75
NHD 1923–2005 0.65 0.66 0.59 0.38

Low-frequency correlation is the correlation of the two series after a 5-y moving average. High-frequency correlation is the correlation of the residuals
after subtracting this moving average. A US prefix indicates that the metric has been restricted to US-landfalling storms only. Cat, category.
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years (Fig. 3). This increase is significant at the 98% confidence
level (Methods). The doubling is higher but compatible with
earlier estimates from Elsner et al. (25), who reported an 11%
increase (with no uncertainty estimate). We emphasize that not all
events of Katrina magnitude will have equally devastating impacts.
The results are also consistent with the low-resolution 1,500-y
overwash sediments from landfalling Atlantic cyclones (6) that
showed 40-y smoothed cyclones counts varying by about 50%
while global temperatures varied by about 1 °C.
We have constructed a homogeneous surge index on the basis of

instrumental records from six long tide-gauge records. We demon-
strate that the surge index correlates with othermeasures ofAtlantic
cycloneactivity and that it responds in particular tomajor landfalling
cyclones. The surge index can be used to identify and estimate po-
tential remaining biases in other records of cyclone activity.
We detect a statistically significant increasing trend in the

number of moderately large surge index events since 1923. We
estimate that warm years have been associated with twice as many
Katrina-magnitude events compared with cold years in the global
average surface temperature record.

Methods: Empirical Return Periods and Confidence Intervals
The return period (R) of events greater than x is related to the cumulative
distribution function (cdf) (c) as R(x) = dt/(1 − c(x)), where dt is the sampling
frequency. Single storms may be manifested as broad peaks that last several
days (Fig. 2), which spoils the intuitive meaning of the return period when
we consider daily data. We therefore down-sample the daily surge index
series to a series of weekly block maxima before estimating return periods.
Weekly resolution was chosen as a trade-off between having high temporal
resolution and ensuring that large storms are manifested as single peaks.
This resolution proved to be sufficient down-sampling for the GEV

distribution to yield high-quality fits and the results are insensitive to further
down-sampling.

Becausewe do not know the true cdf of the underlying process, we have to
rely on the observed random sample x1, x2, . . . , xN. That is, we do not know
the exact shape of the function c(x). We can estimate c(xi) empirically from
the rank of xi within the sample (26, 27). The usual method for estimating the
uncertainties of the empirical estimate is Greenwood’s formula for the
approximate SEs (e.g., ref. 26), which is then inflated to a confidence in-
terval assuming that the errors are normally distributed. However, this ap-
proach fails for extreme values and for small sample sizes. For extreme
percentiles it is clear that the uncertainties cannot be symmetric, and the
uncertainty distribution must be bounded as we know there can be no
values outside the 0th- to 100th-percentile range. As we are particularly
interested in extreme events, we have developed an alternative robust
Monte Carlo approach for determining the confidence interval of the em-
pirical estimates of c and thus R.

We cannot draw surrogate samples according the true distribution of x as
we do not know the true distribution function (c). For any random sample
(xi) from c, the corresponding value of c(xi) will have uniform probability
in the interval 0–1 by construction.

So, although we cannot draw samples according to the true process dis-
tribution, we can draw samples according to the true distribution of c(x)
simply by using a standard uniform random number generator. The goal is to
compare this true c(x) with what the empirical estimator of c would give.
The difference between the true and estimated percentiles can be used to
infer confidence intervals if we ensure that the empirical estimator is equiva-
lent to the one applied to the observed sample. The empirical estimator for c
(xi) is dependent only on the rank of xi within the sample and on the size of
the sample; i.e., it is independent of the distribution, and the rank of c(xi)
will be the same as the rank of xi. We can therefore apply the empirical
estimator directly to a surrogate sample of true percentiles. To summarize,
the Monte Carlo procedure for determining the spread in empirical esti-
mates of c is as follows:

i) Generate a set of N random samples from a uniform distribution be-
tween zero and one. Label this csurrogate,true.

ii) Estimate c empirically from csurrogate,true. Label this csurrogate,empirical.
iii) Repeat steps i and ii many times.
iv) The confidence interval of an empirical estimate of the percentile can

be determined from the spread of all of the csurrogate,true with the given
value csurrogate,empirical.

In Fig. 4 we show the viability of the empirical procedure on artificial data
with known characteristics.

This Monte Carlo approach is more robust, conservative, and flexible than
the traditional Greenwood’s equation (26). Further, serial dependence,
clustering, and measurement noise can be taken into account in the Monte
Carlo approach by designing appropriate noise models. The normalized
surge index series show only very weak autocorrelation, so we fit a sec-
ond-order autoregressive (AR) noise model. The AR noise is then trans-
formed to a uniform distribution. We find that the confidence intervals are
not sensitive to the serial correlation for the data used in this study.
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SI Methods
S1. Construction of the Surge Index.The selection criteria for the six
tide gauges used in the construction of the surge index are
presented in the main text. Here we summarize the steps involved
in our calculation of the surge index.

i) For each station we do the following:
a) Apply a 24-h smoothing to the hourly series, thus obtain-

ing a moving average daily average sea-level series. Gaps
shorter than 3 h are in-filled by linear interpolation.

b) Calculate the squared day-to-day differences from this
daily sea-level series.

c) Down-sample this series to a daily surge series, using daily
block maxima.

d) Remove the annual cycle by division. The different tide-
gauge locations have different sensitivities, due to local ef-
fects such as bathymetry, and normalizing by the seasonal
cycle brings the records to a common reference. The back-
ground seasonal cycle is determined from the second per-
centile of data within a moving 21-d-wide seasonal slice.
The estimated seasonal cycle is smoothed using a 180-d-
long robust loess filter with periodic boundary conditions.

e) Decluster the record. Single storm events may cause broad
peaks that last several days. We therefore remove samples
that are smaller than the local 3-d maximum value.

ii) Combine the six deseasonalized surge records into a single
record of daily maximum values. We allow a maximum of
one station missing when calculating the maximum value.
Declustering (step i, e) is ignored on the rare dates, when
it would have removed data from all six stations.

iii) Rescale the final surge index containing the record of daily
maximal surge values to have median = 1.

The conclusions of this paper are insensitive to minor changes in
the procedure. However, the justification for our further analysis
using the generalized extreme value distribution hinges on the
series being approximately stationary on subannual scales. There-
fore, the performance of step i, d is important. We have therefore
verified that step i, d removes the kink in the distribution at fre-
quencies corresponding to annual return periods.
Steps i, a and i, b act to remove the tidal signal and the trend.

The remaining signal is completely dominated by nontidal com-
ponents and primarily wind-driven changes in sea level. This can be
easily verified as steps i, a and i, b can be combined into a simple
finite impulse response filter and the resulting frequency response
can be examined. As an example, for Mayport the modeled hourly
tidal signal [from National Oceanic and Atmospheric Adminis-
tration (NOAA)] has a SD of 0.50 m; applying step i, a reduces this
to 0.10 m; and applying step i, b reduces this to 0.01 m. Finally, we
have repeated the entire analysis but explicitly remove the tidal
signal before step i, a and obtain near identical results.
There are unfortunately a few gaps in the tide-gauge records,

and some of these gaps could have been caused by extreme
weather. Here we compare the tide-gauge records with the Atlantic
Hurricane Database (HURDAT) to determine which gaps could
be caused by the passing of a storm. It is implausible that storms
passing close to tide gauges were not well documented. We have
chosen a few simple criteria to screen for gaps that might be
related to the passing of a storm:

The data gap start must overlap the timing of the storms
making landfall within a ±24-h margin.

The storm must have been within 250 km of the tide gauge at
the onset of the gap.
The start of the storm must precede the onset of the data gap
(allowing for a 6-h slack).

From Table S1 (and Fig. S2) we see that by these criteria only
eight data gaps can possibly be related to the passing of a storm.
These gaps in the tide-gauge records quite likely correspond to
some large storm surges that are missing in the surge index record.
We have therefore made a sensitivity test where we set the surge
index at the “gap-start” dates manually to have the same magnitude
as Hurricane Katrina 2005. Our results are robust to this test.

S2. Events with the Largest Surge Index. In Table S2 we show the
surge index of the 50 greatest events. A surge will generally also
lead to a secondary peak the following day as sea level returns
toward the background level. For this reason dates are not exact.
Secondary peaks within 4 d of larger peaks are excluded from this
list as they are considered to be the same event. In Table S2 we
have also calculated accumulated cyclone energy (ACE) and US-
ACE over the week centered on the date shown.We caution against
comparing the relative rank of individual events. The surge index
ranking reflects the impact at the specific tide-gauge locations and
therefore should not be interpreted as a storm ranking. The pur-
pose of this list is to demonstrate that the surge index truly captures
cyclone activity, rather than providing a storm severity ranking.
A few events outside the hurricane season cannot be attributed

to tropical cyclones. Several of these events, however, show up in
other records of extreme weather; e.g., the large March 13, 1993
event is commonly known as the 1993 superstorm (1). NOAA has
an extensive record of this event.

S3. GEV Distribution Fitting. The general method of fitting a dis-
tribution (f), with parameters (m), to a series (x) involves maxi-
mizing the likelihood function

LðmÞ ¼ ∏
i
fm ðxiÞ; [S1]

where i is an index into the series x. In practice, this is usually
done by minimizing −log(L). The method can be easily extended
to nonstationary distributions by having m vary with time (i). In
this study, we achieve this by letting m be dependent on global
temperature. The calculation of L can easily be parallelized and
for some distribution functions it may be advantageous to per-
form this calculation on a graphical processing unit.
The confidence intervals of the model parameters are given by

the likelihood function. We sample the parameter space according
to the likelihood density, usingMarkov chainMonteCarlo (MCMC)
using the Metropolis–Hastings algorithm (2). Regions of the
parameter space that are likely will be sampled with a high
density whereas less likely regions will be sampled less densely.
From the percentiles of the sampling density we determine the
confidence intervals. In this study we denote the median of the
likelihood distribution as the “best guess” that is more robust
than using the maximum-likelihood model.
We verify convergence of the MCMC solutions by manual

inspection of the accepted models and their autocorrelation
structure. In this study, our likelihood functions are very cheap
to calculate, and we can afford to make the MCMC runs much
longer than is strictly necessary. We speed up convergence, by
taking random steps in a linearly transformedmodel space chosen
on the basis of a principal component analysis (PCA) of the
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accepted models from an initial shorter MCMC run. We observe
that the burn-in is usually confined to the shorter initial MCMC
run, and that the transformed steps almost always gives near
optimal rejection rates.
Under certain conditions the central limit theorem states that

the sum of a set of independent random variables will approach a
normal distribution in the limit of infinitely large sets. Analogously,
the distribution of block maxima approaches the generalized
extreme value (GEV) distribution as the blocks get larger (3).
For that reason we expect that block maxima of the surge index

should follow a GEV distribution. The GEV distribution, used in
this study, can be described by
where μ, σ, and k are the location, scale, and shape parameters,
respectively. In the MCMC inference of the GEV model we use
the conventional uniform priors on μ, log(σ), and k.
We are interested in the return period of large and rare events.

We find that the surge index maxima of 7-d blocks can be ac-
curately modeled by the GEV distribution over a wide range of
magnitudes (Fig. 3). Sensitivity tests show that our results are not
sensitive to larger block sizes. TheGEVdistribution is flexible and
combines three simpler types of distributions commonly used to

model block maxima: the Weibull, Frechet, and Gumbel dis-
tributions. The flexibility lets the data decide which distribution is
appropriate.
It is sometimes argued (e.g., ref. 3) that taking block maxima

is a wasteful method to infer statistics of extreme events. The
reasoning is that there may be a small chance that two very large
events are inside the same block and that taking block maxima
could be discarding one of the already rare large events. The
peaks-over-threshold (POT) method is the usual proposed al-
ternative, where a distribution is fitted to all events that are

above a certain threshold. The advantage is that no large events
are discarded. The drawback of the POT approach is that return
periods can be calculated only if the frequency of threshold
crossing is known. The threshold return period can be estimated
using empirical cumulative distribution. However, this empirical
estimate assumes stationarity and the POT method is hence ill-
suited for nonstationary series. For that reason we use exclu-
sively the GEV distribution. However, our conclusions are in-
sensitive to different block sizes and we get compatible results
using POT analysis; we conclude that extreme event wastage is
not an issue.

1. Kocin PJ, Schumacher PN, Morales RF, Uccellini LW (1995) Overview of the 12–14 March
1993 superstorm. Bull Am Meteorol Soc 76:165–182.

2. Hastings WK (1970) Monte Carlo sampling methods using Markov chains and their
applications. Biometrika 57:97–109.

3. Coles S (2001) An Introduction to Statistical Modeling of Extreme Values (Springer,
London).
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Fig. S1. Map showing locations of tide gauges used in the construction of the surge index.
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Fig. S2. Tracks of storms (blue line) that likely are the cause of gaps in the tide-gauge records. Red-yellow dots indicate wind speed at 6-h intervals; green
shows tide-gauge location. White circles indicate when the tide gauge has missing data.

Table S1. Tide-gauge data gaps that coincide with storm landfall

Tide gauge Gap start Wind, kt Distance, km Storm name

Key West, FL Dec. 1, 1925; 07:00 65 158 Not named
Charleston, SC Aug. 12, 1940; 07:00 70 77 Not named
Mayport, FL June 24, 1945; 03:00 95 118 Not named
Mayport, FL Aug. 13, 2004; 06:00 45 128 Bonnie*
Pensacola, FL Aug. 31, 1950; 14:00 83 63 Baker
Pensacola, FL Sept. 13, 1979; 17:00 115 119 Frederic
Pensacola, FL Sept. 16, 2004; 18:00 115 60 Ivan
Galveston, Pier 21 Sept. 13, 2008; 15:00 95 8 Ike

List of HURDAT storms that coincide with data gaps in the tide-gauge records (see text for selection criteria).
“Gap start” shows the date of the first missing sample. “Wind” shows the maximum wind speed in the 24-h days
preceding the gap. “Distance” refers to the closest distance to tide gauge in the 24 h centered on the gap start.
*Tropical storm Bonnie had similar timing to hurricane Charley and both could be responsible for the tide-
gauge outage.
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Table S2. 50 greatest events

Rank Event date Candidate storm (category) Surge index ACE US-ACE Wind, kt

1 Sept. 20, 1926 “Great Miami hurricane” (4) 283 422,098 228,174 125
2 July 25, 1934 Not named (1) 153 39,450 39,450 65
3 Sept. 19, 1947 Not named (5) 139 223,806 223,806 130
4 Sept. 10, 1961 Carla (5) 114 588,267 312,007 125
5 Aug. 30, 2005 Katrina (5) 113 189,274 167,424 110
6 July 10, 2005 Dennis (4) 107 207,799 188,024 120
7 Sept. 12, 2008 Ike (4) 104 146,499 143,599 100
8 Sept. 10, 1965 Betsy (4) 94 169,699 169,699 135
9 Sept. 1, 1932 Not named (1) 89 172,324 65,775 70
10 June 28, 1957 Audrey (4) 86 79,474 79,474 125
11 Sept. 27, 1998 Georges (4) 85 463,173 155,699 95
12 Sept. 1, 2008 Gustav (4) 70 326,423 300,849 125
13 Oct. 6, 1995 Opal (4) 59 180,099 91,975 110
14 Aug. 5, 1940 Not named (1) 57 117,449 117,449 70
15 Aug. 18, 1969 Camille (5) 57 362,419 217,996 165
16 Aug. 13, 1932 Not named (4) 55 64,600 64,600 125
17 Oct. 25, 2005 Wilma (5) 55 190,674 161,224 110
18 July 15, 2003 Claudette (1) 55 81,050 56,875 75
19 Oct. 4, 1964 Hilda (4) 53 166,994 166,994 83
20 Sept. 15, 2004 Ivan (5) 53 406,723 364,298 105
21 Aug. 17, 1983 Alicia (3) 52 68,500 68,500 100
22 Aug. 31, 1942 Not named (3) 49 162,324 93,275 70
23 Aug. 26, 1926 Not named (3) 48 110,974 110,974 95
24 Sept. 27, 2002 Isidore (3) 47 180,174 180,174 110
25 8-Sep-1974 Carmen (4) 47 168,899 124,474 120
26 Sept. 12, 1979 Frederic (4) 42 272,524 134,274 115
27 Sept. 25, 1941 Not named (1) 40 229,774 57,725 70
28 April 8, 1938 39
29 Sept. 19, 1928 Not named (5) 39 152,974 152,974 140
30 Feb. 27, 1984 39
31 Sept. 30, 1959 Gracie (4) 36 281,526 104,798 96
32 Aug. 9, 1980 Allen (5) 36 345,148 345,148 100
33 Sept. 24, 2005 Rita (5) 35 253,274 222,699 100
34 March 14, 1993 35
35 Sept. 11, 1964 Dora (3) 35 307,606 121,637 83
36 Oct. 28, 1985 Juan (1) 34 79,850 79,850 65
37 June 12, 2005 Arlene (0) 34 31,175 31,175 50
38 Feb. 25, 1965 33
39 Sept. 2, 1985 Elena (3) 33 145,274 145,274 100
40 Aug. 3, 1933 Not named (1) 31 63,500 63,500 70
41 July 6, 1933 Not named (2) 31 118,524 70
42 July 30, 1995 Erin (1) 30 65,150 65,150 80
43 Sept. 5, 1979 David (5) 29 206,774 158,549 150
44 Sept. 22, 1948 Not named (3) 29 143,824 143,824 90
45 Oct. 19, 1944 Not named (3) 29 124,557 124,557 58
46 Oct. 5, 1949 Not named (3) 28 75,853 75,853 112
47 Dec. 7, 1969 28
48 July 24, 1933 Not named (0) 27 69,000 69,000 40
49 Aug. 4, 1995 Erin (1) 26 68,925 68,925 80
50 Jan. 21, 1979 26

ACE and US-ACE are calculated over the week centered at the date shown. Wind shows the maximum landfalling wind speed.
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