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Abstract. Many scientists have made use of the wavelet
method in analyzing time series, often using popular free
software. However, at present there are no similar easy to
use wavelet packages for analyzing two time series together.
We discuss the cross wavelet transform and wavelet coher-
ence for examining relationships in time frequency space be-
tween two time series. We demonstrate how phase angle
statistics can be used to gain confidence in causal relation-
ships and test mechanistic models of physical relationships
between the time series. As an example of typical data where
such analyses have proven useful, we apply the methods to
the Arctic Oscillation index and the Baltic maximum sea
ice extent record. Monte Carlo methods are used to assess
the statistical significance against red noise backgrounds. A
software package has been developed that allows users to
perform the cross wavelet transform and wavelet coherence
(http://www.pol.ac.uk/home/research/waveletcoherence/).

1 Introduction

Geophysical time series are often generated by complex
systems of which we know little. Predictable behavior in
such systems, such as trends and periodicities, is therefore
of great interest. Most traditional mathematical methods
that examine periodicities in the frequency domain, such as
Fourier analysis, have implicitly assumed that the underly-
ing processes are stationary in time. However, wavelet trans-
forms expand time series into time frequency space and can
therefore find localized intermittent periodicities. There are
two classes of wavelet transforms; the Continuous Wavelet
Transform (CWT) and its discrete counterpart (DWT). The
DWT is a compact representation of the data and is par-
ticularly useful for noise reduction and data compression
whereas the CWT is better for feature extraction purposes.
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As we are interested in extracting low s/n ratio signals in
time series we discuss only CWT in this paper. While CWT
is a common tool for analyzing localized intermittent os-
cillations in a time series, it is very often desirable to ex-
amine two time series together that may be expected to be
linked in some way. In particular, to examine whether re-
gions in time frequency space with large common power
have a consistent phase relationship and therefore are sug-
gestive of causality between the time series. Many geophys-
ical time series are not Normally distributed and we suggest
methods of applying the CWT to such time series. From two
CWTs we construct the Cross Wavelet Transform (XWT)
which will expose their common power and relative phase
in time-frequency space. We will further define a measure
of Wavelet Coherence (WTC) between two CWT, which can
find significant coherence even though the common power is
low, and show how confidence levels against red noise back-
grounds are calculated.

We will present the basic CWT theory before we move
on to XWT and WTC. New developments such as quanti-
fying the phase relationship and calculating the WTC sig-
nificance level will be treated more fully. When using the
methods on time series it is important to have solid mecha-
nistic foundations on which to base any relationships found,
and we caution against using the methods in a “scatter-gun”
approach (particularly if the time series probability density
functions are modified). To illustrate how the various meth-
ods are used we apply them to two data sets from meteo-
rology and glaciology. Finally, we will provide links to a
MatLab software package.

2 Data

An example of two physical effects that we expect to be
linked from consideration of the climate system are the mean
winter state of the arctic atmosphere and winter severity re-
flected by ice conditions.

http://www.pol.ac.uk/home/research/waveletcoherence/
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Fig. 1. The standardized time series of winter (DJF) AO (bottom)
and its continuous wavelet power spectrum (top). The thick black
contour designates the 5% significance level against red noise and
the cone of influence (COI) where edge effects might distort the
picture is shown as a lighter shade. The standardized AO series has
an AR1 coefficient of 0.02.

The Arctic Oscillation (AO) is a key aspect of climate vari-
ability in the Northern Hemisphere. The AO is defined as
the leading empirical orthogonal function (EOF) of North-
ern Hemisphere sea level pressure anomalies pole ward of
20◦N (Thompson and Wallace, 1998), and characterized by
an exchange of atmospheric mass between the Arctic and
middle latitudes. The Baltic Sea is a transition zone between
the North Atlantic region and the continental area of Eura-
sia, leading to large inter-annual variability of ice conditions.
The Baltic Sea is partly covered by ice every winter season,
the maximum annual ice extent varies between 10–100% of
the sea area, the length of ice season is 4–7 months, and the
maximum annual thickness of ice is 50–120 cm (Jevrejeva,
2001; Sein̈a et al., 2001). Recently published results demon-
strate that large-scale atmospheric circulation patterns in the
Arctic and North Atlantic described by the AO or by the
somewhat similar North Atlantic Oscillation teleconnections
significantly control ice conditions in the Baltic Sea (Loewe
and Koslowski, 1998; Omstedt and Chen, 2001; Jevrejeva
and Moore, 2001; Jevrejeva, 2002).

In this paper, we examine the connection between win-
ter AO and Baltic Sea ice extent and especially explore the
phase relationships between the series in the light of the ex-
pected causality links. Ice conditions are represented by the
time series of maximum annual ice extent in the Baltic Sea
(BMI) for the period 1720–2000 (Seinä et al., 2001). We
use the winter AO index (December–February 1851–1997)
of Thompson and Wallace (1998).

Many statistical tests assume that the probability density
function (pdf) is close to Normal. Our experience with
CWTs of geophysical time series shows that series far from
normally distributed produces rather unreliable and less sig-
nificant results. Occasionally it can therefore be a good idea

Fig. 2. The standardized BMI percentile time series (bottom) and its
continuous wavelet power (top). The thick contour designates the
5% significance level against red noise and the cone of influence
(COI) where edge effects might distort the picture is shown as a
lighter shade. The standardized BMI percentile series has an AR1
coefficient of 0.08.

to transform the pdf of the time series. However, we cau-
tion against rashly changing the pdf. The BMI index is
bi-modally distributed with maximum probabilities around
70 000 km2 and 420 000 km2. A simple periodic oscillation
between these two modes will almost have the shape of a
square wave. The power of a square wave leaks into fre-
quency bands outside the fundamental period. We therefore
transform the BMI index into a record of percentiles (in terms
of its cumulative distribution function) and thus forcing the
pdf to be rectangular. This has the effect of narrowing the
bandwidth of intermittent oscillations. We standardize (zero
mean, unit standard deviation) both time series and will re-
fer to the standardized versions as simply AO and BMI. The
time series of the AO and BMI time series are shown in
Figs. 1 and 2.

3 Methods

3.1 The Continuous Wavelet Transform (CWT)

A wavelet is a function with zero mean and that is localized
in both frequency and time. We can characterize a wavelet
by how localized it is in time (1t) and frequency (1ω or the
bandwidth). The classical version of the Heisenberg uncer-
tainty principle tells us that there is always a tradeoff between
localization in time and frequency. Without properly defining
1t and1ω, we will note that there is a limit to how small the
uncertainty product1t·1ω can be. One particular wavelet,
the Morlet, is defined as

ψ0(η) = π−1/4eiω0ηe
−

1
2η

2
. (1)

whereω0 is dimensionless frequency andη is dimensionless
time. When using wavelets for feature extraction purposes
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the Morlet wavelet (withω0=6) is a good choice, since it
provides a good balance between time and frequency local-
ization. We therefore restrict our further treatment to this
wavelet, although the methods we present are generally ap-
plicable (see, e.g. Foufoula-Georgiou, 1995).

The idea behind the CWT is to apply the wavelet as a band-
pass filter to the time series. The wavelet is stretched in time
by varying its scale (s), so thatη=s·t, and normalizing it to
have unit energy. For the Morlet wavelet (withω0=6) the
Fourier period (λwt ) is almost equal to the scale (λwt=1.03 s).
The CWT of a time series (xn, n=1,. . . ,N) with uniform time
stepsδt, is defined as the convolution ofxn with the scaled
and normalized wavelet. We write

WX
n (s) =

√
δt
s

N∑
n′=1

xn′ψ0
[(
n′

− n
)
δt
s

]
. (2)

In practice it is faster to implement the convolution in Fourier
space (see details in Torrence and Compo, 1998). We define
the wavelet power as|WX

n (s)|
2. The complex argument of

WX
n (s) can be interpreted as the local phase.
The CWT has edge artifacts because the wavelet is not

completely localized in time. It is therefore useful to intro-
duce a Cone of Influence (COI) in which edge effects can
not be ignored. Here we take the COI as the area in which
the wavelet power caused by a discontinuity at the edge has
dropped to e−2 of the value at the edge.

The statistical significance of wavelet power can be as-
sessed relative to the null hypotheses that the signal is gener-
ated by a stationary process with a given background power
spectrum (Pk). Many geophysical time series have distinc-
tive red noise characteristics that can be modeled very well
by a first order autoregressive (AR1) process. The Fourier
power spectrum of an AR1 process with lag-1 autocorrela-
tion α (estimated from the observed time series e.g. Allen
and Smith, 1996) is given by

Pk =
1 − α2∣∣1 − αe−2iπk

∣∣2 , (3)

where k is the Fourier frequency index.
The wavelet transform can be thought of as a consecutive

series of band-pass filters applied to the time series where the
wavelet scale is linearly related to the characteristic period
of the filter (λwt ). Hence, for a stationary process with the
power spectrumPk the variance at a given wavelet scale, by
invocation of the Fourier convolution theorem, is simply the
variance in the corresponding band ofPk. If Pk is sufficiently
smooth then we can approximate the variance at a given scale
simply withPk using the conversionk−1=λwt . Torrence and
Compo (1998) use Monte Carlo methods to show that this
approximation is very good for the AR1 spectrum. They then
show that the probability that the wavelet power, of a process
with a given power spectrum (Pk), being greater thanp is

D

(∣∣WX
n (s)

∣∣2
σ 2
X

< p

)
=

1

2
Pkχ

2
ν (p) , (4)

Fig. 3. Cross wavelet transform of the standardized AO and BMI
time series. The 5% significance level against red noise is shown
as a thick contour. The relative phase relationship is shown as
arrows (with in-phase pointing right, anti-phase pointing left, and
BMI leading AO by 90◦ pointing straight down).

whereν is equal to 1 for real and 2 for complex wavelets.
The CWT of the AO and BMI are shown in Figs. 1 and 2

respectively. There are clearly common features in the
wavelet power of the two time series such as the significant
peak in the∼5 year band around 1940. Both series also
have high power in the 2–7 year band in the period from
1860–1900, though for AO the power is not above the 5%
significance level. However, the similarity between the por-
trayed patterns in this period is quite low and it is therefore
hard to tell if it is merely a coincidence. The cross wavelet
transform helps in this regard.

3.2 The cross wavelet transform

The cross wavelet transform (XWT) of two time seriesxn
andyn is defined asWXY

=WXWY∗, where * denotes com-
plex conjugation. We further define the cross wavelet power
as |WXY

|. The complex argument arg(W xy) can be inter-
preted as the local relative phase betweenxn andyn in time
frequency space. The theoretical distribution of the cross
wavelet power of two time series with background power
spectraPXk andP Yk is given in Torrence and Compo (1998)
as

D

(∣∣WX
n (s)W

Y∗
n (s)

∣∣
σXσY

< p

)
=
Zν(p)

ν

√
PXk P

Y
k , (5)

whereZν(p) is the confidence level associated with the prob-
ability p for a pdf defined by the square root of the product of
two χ2 distributions. For example the 5% significance level
marked in Fig. 3 is calculated usingZ2(95%)=3.999.

The XWT of AO and BMI is shown in Fig. 4. Here we
notice that the common features we found by eye from the
individual wavelet transforms stand out as being significant
at the 5% level. We also note that there also is significant
common power in the∼10–16 year band from 1940–1980.
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Fig. 4. Wavelet coherence 5% significance level determined using
Monte Carlo generated noise (with 10 000 surrogate data set pairs).
The legend shows the 2 AR1 coefficients of the surrogate data sets
and the numbers of scales per octave (s/o) used in calculating the
scale smoothing. The color of the noise has little impact on the
significance level, whereas the specifics of the smoothing have a
large impact. The large values at either end of the spectrum are due
to the scale smoothing operator reaching the scale boundaries.

For there to be a simple cause and effect relationship between
the phenomena recorded in the time series we would expect
that the oscillations are phase locked. So, it is comforting
that the XWT show that AO and BMI are in anti phase in
all the sectors with significant common power. Since AO
and BMI are in anti-phase across all scales, we conclude that
BMI to a large extent simply mirrors the AO. Outside the ar-
eas with significant power the phase relationship is also pre-
dominantly anti phase. We therefore speculate that there is a
stronger link between AO and BMI than that implied by the
cross wavelet power.

3.3 Cross wavelet phase angle

As we are interested in the phase difference between the
components of the two time series we need to estimate the
mean and confidence interval of the phase difference. We
use the circular mean of the phase over regions with higher
than 5% statistical significance that are outside the COI to
quantify the phase relationship. This is a useful and general
method for calculating the mean phase. The circular mean of
a set of angles (ai , i=1...n) is defined as (e.g. Zar, 1999)

am= arg(X, Y ) with X=
n∑
i=1

cos(ai) andY=
n∑
i=1

sin(ai) , (6)

It is difficult to calculate the confidence interval of the mean
angle reliably since the phase angles are not independent.
The number of angles used in the calculation can be set
arbitrarily high simply by increasing the scale resolution.
However, it is interesting to know the scatter of angles around

the mean. For this we define the circular standard deviation
as

s =
√

−2 ln(R/n) , (7)

whereR=
√
(X2

+Y 2). The circular standard deviation is
analogous to the linear standard deviation in that it varies
from zero to infinity. It gives similar results to the linear stan-
dard deviation when the angles are distributed closely around
the mean angle. In some cases there might be reasons for
calculating the mean phase angle for each scale, and then the
phase angle can be quantified as a number of years.

The XWT phase angle within the 5% significant regions
and outside the COI has the mean phase –176±12◦ (where
± designates the circular standard deviation). This basically
confirms the conclusion that AO and BMI are in anti-phase.
Note that the time series already have a 3 month lag since
the ice extent is greatest in April. A 3 month lag is consis-
tent with the mechanism of stratospheric forcing of the tropo-
sphere (Baldwin et al., 2001; Jevrejeva et al., 2003). The ob-
servation that the phase angles are constant across all scales
argues for a constant time lag due to the physical mechanism
of signal propagation from the AO to the ice extent. The de-
viation from completely anti-phase suggests that AO leads
BMI slightly, however, the circular standard deviation is too
large to make any firm conclusion.

3.4 Wavelet coherence

Cross wavelet power reveals areas with high common power.
Another useful measure is how coherent the cross wavelet
transform is in time frequency space. Following Torrence
and Webster (1998) we define the wavelet coherence of two
time series as

R2
n(s) =

∣∣S (s−1WXY
n (s)

)∣∣2
S
(
s−1

∣∣WX
n (s)

∣∣2) · S
(
s−1

∣∣WY
n (s)

∣∣2) , (8)

whereS is a smoothing operator. Notice that this definition
closely resembles that of a traditional correlation coefficient,
and it is useful to think of the wavelet coherence as a lo-
calized correlation coefficient in time frequency space. We
write the smoothing operatorS as

S(W) = Sscale(St ime(Wn(s))) , (9)

whereSscale denotes smoothing along the wavelet scale axis
and St ime smoothing in time. It is natural to design the
smoothing operator so that it has a similar footprint as the
wavelet used. For the Morlet wavelet a suitable smoothing
operator is given by Torrence and Webster (1998)

St ime(W)|s =

(
Wn(s) ∗ c

−t2

2s2

1

) ∣∣∣∣∣
s

,

St ime(W)|s = (Wn(s) ∗ c25(0.6 s))
∣∣
n
, (10)

wherec1 and c2 are normalization constants and5 is the
rectangle function. The factor of 0.6 is the empirically deter-
mined scale decorrelation length for the Morlet wavelet (Tor-
rence and Compo, 1998). In practice both convolutions are

.
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done discretely and therefore the normalization coefficients
are determined numerically.

The statistical significance level of the wavelet coherence
is estimated using Monte Carlo methods. We generate a large
ensemble of surrogate data set pairs with the same AR1 co-
efficients as the input datasets. For each pair we calculate the
wavelet coherence. We then estimate the significance level
for each scale using only values outside the COI. Empirical
testing shows that the AR1 coefficients have little impact on
the significance level. The specifics of the smoothing opera-
tor, however, have a large impact. For example the resolution
chosen when calculating the scale smoothing has a major in-
fluence on the significance level (see Fig. 4). The Monte
Carlo estimation of the significance level requires of the or-
der of 1000 surrogate data set pairs. The number of scales per
octave should be high enough to capture the rectangle shape
of the scale smoothing operator while minimizing computing
time. Empirically we find 10 scales per octave to be satisfac-
tory.

The squared WTC of AO and BMI is shown in Fig. 5.
Compared with the XWT a larger section stands out as being
significant and all these areas show an anti-phase relation-
ship between AO and BMI. The area of a time frequency plot
above the 5% significance level is not a reliable indication
of causality. Even if the scales were appropriately weighed
for the averaging, it is possible for two series to be perfectly
correlated at one specific scale while the area of significant
correlation is much less than 5%. However, the significant re-
gion of Fig. 5 is so extensive that it is very unlikely that this is
simply by chance. Oscillations in AO are manifested in the
BMI on wavelengths varying from 2–20 years, suggesting
that BMI passively mirrors AO. Regions with low coherence
coincide with low wavelet power in the AO and are therefore
expected. Possibly because the EOF that AO represents is
not really capturing the actual location of the centers of ac-
tion during the Little Ice Age. As with the XWT, we can cal-
culate the mean phase angle of the significant regions. The
mean phase angle over the regions with significant wavelet
coherence and outside the COI is 174±15◦.

4 Summary

The CWT expands a time series into a time frequency space
where oscillations can be seen in a highly intuitive way. The
Morlet wavelet (withω0=6) is a good choice when using
wavelets for feature extraction purposes, because it is reason-
ably localized in both time and frequency. From the CWTs
of two time series one can construct the XWT. The XWT ex-
poses regions with high common power and further reveals
information about the phase relationship. If the two series
are physically related we would expect a consistent or slowly
varying phase lag that can be tested against mechanistic mod-
els of the physical process. WTC can be thought of as the lo-
cal correlation between two CWTs. In this way locally phase
locked behavior is uncovered. The more desirable features
of the WTC come at the price of being slightly less localized

Fig. 5. Squared wavelet coherence between the standardized AO
and BMI time series. The 5% significance level against red noise is
shown as a thick contour. All significant sections show anti-phase
behavior.

in time frequency space. The significance level of the WTC
has to be determined using Monte Carlo methods.

4.1 Practical tips

Cross wavelet analysis and wavelet coherence are powerful
methods for testing proposed linkages between two time se-
ries.

– Check the histograms of the time series to ensure that
they are not too far from normally distributed. Consider
transforming the time series, if the pdf’s of the time se-
ries are far from Gaussian. When choosing a transfor-
mation, it is preferable to choose an analytic transfor-
mation such as taking the logarithm if the data is log-
normally distributed. In other cases the simple “per-
centile” transformation we used for the BMI might be
useful. An advantage of using that particular transfor-
mation is that it does not have any outliers.

– Consider what the expectations are for the outcome of
the analysis given the proposed linking mechanism. We
caution against blindly applying these methods to ran-
domly chosen data sets. Like other statistical tests some
data set sets will display highly statistically significant
links simply by chance.

– When a wavelet has been chosen the CWTs of both time
series are calculated. We suggest a scale resolution of
10 scales per octave and use of the Morlet wavelet un-
less there are good grounds to do otherwise. For geo-
physical time series an AR1 red noise assumption is of-
ten suitable and Eqs. (3) and (4) can be used to calculate
the significance level of the wavelet power. Remember
to take special care not to misinterpret results inside the
COI.
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– From the two CWTs the XWT is calculated. The XWT
exposes regions with high common power and further
reveals information about the phase relationship. If the
two series are physically related we would expect a con-
sistent or slowly varying phase lag that can be tested
against mechanistic models of the physical process. The
circular mean of the phase angles can be used to quan-
tify the phase relationship.

– Also, from two CWTs the WTC can be calculated which
can be thought of as the local correlation between the
time series in time frequency space. Where XWT un-
veils high common power, WTC finds locally phase
locked behavior. The more desirable features of the
WTC come at the price of being slightly less localized
in time frequency space. The significance level of the
WTC has to be determined using Monte Carlo methods.

A MatLab software package by the authors for performing
XWT and WTC can be found athttp://www.pol.ac.uk/home/
research/waveletcoherence/.
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