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a  b  s  t  r  a  c  t

Proxy  data  forms  natural  time  series  used  to  lengthen  instrumental  climatic  records,  and  may  contain
a  significant  portion  of  autocorrelation.  Increased  serial  correlation  limits  the  number  of independent
observations,  not  satisfying  the assumptions  of  conventional  statistical  methods.  We  estimate  the  sig-
nificance  of calibration  and  verification  statistics  used  in dendroclimatic  reconstructions  by  combining
Monte-Carlo  iterations  with  frequency  (Ebisuzaki)  or time  (Burg)  domain  time  series  modelling.  Signifi-
cance  tests  are  presented  for Coefficient  of Determination  (R2),  Coefficient  of  Correlation  (r2), Reduction
of  Error  (RE)  and  Coefficient  of  Error  (CE)  for time  series  ranging  from  very  low  to very  high autocorrela-
tion.  Increased  autocorrelation  implies  higher  occurrences  of relatively  high  but  spurious  reconstruction
statistics.  Ebisuzaki  time  series  modelling  shows  greater  robustness  and  its  use  is recommended  over

Burg’s  method,  which  penalizes  the  restriction  in  the  number  of autocorrelation  coefficients  imposed
by  the  Akaike  Information  Criterion.  Positive  RE  and  CE values,  traditionally  viewed  as  successful  recon-
struction  statistics,  are  not  necessarily  significant  and  depend  on  the  temporal  structure  of  the  time  series
used.  This  approach  is  further  implemented  successfully  to compute  confidence  intervals  based  on  the
temporal structure  of  the residuals  of  the  transfer  function.  A Matlab® package  and  a Windows  executable
file  for  non-Matlab® users  are  provided  to  perform  the  described  analyses.
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Paleoclimatic research employs indirect estimates of past cli-
ate (proxy records) that are time series of physical or chemical

roperties of geological, glaciological and paleontological archives.
roxy series elongate the instrumental records retrospectively over
he past centuries and millennia and thus strengthen our under-
tanding about climate variability prior to any direct weather
bservation. Typical paleoclimatic proxies are tree-rings, corals,
ce-cores, boreholes and various other kinds of sedimentary and
Please cite this article in press as: Macias-Fauria, M.,  et al., Persistence m
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ossil evidence (Bradley, 1999). Similarly to many other types
f natural time series, proxy records are often highly autocor-
elated. A principal constituent of this autocorrelation originates
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rom climate, which shows persistence via fluctuations and trends
Karl, 1988; Trenberth, 1984). Additional constituents of the auto-
orrelation may  originate from factors attached to each proxy.
n tree-rings, for example, the physiology of trees serves as a
asis for growth resources from previous years to be carried
ver a number of forthcoming years, resulting in tree-ring val-
es that are depending on temporally adjacent values (Fritts,
976). Alternatively, methodological aspects may  require that the
eries become ‘low-pass’ filtered. This practice produces artificial
utocorrelation to data. Filtering may  be applied to improve the
aleoclimatic reconstructions by timescale-dependent calibrations
ue to either physical limitations of the proxy at certain frequencies
r frequency-dependent correlation between the proxy and cli-
ate (e.g. Guiot, 1985; Holopainen et al., 2009; Macias Fauria et al.,

010; Moberg et al., 2005; Osborn and Briffa, 2000; Rutherford
t al., 2005; Timm et al., 2004). In any case, serially uncorrelated
atters: Estimation of the statistical significance of paleoclimatic
nologia (2012), doi:10.1016/j.dendro.2011.08.003

ime series (i.e. white noise) do not serve for most climatic recon-
truction purposes, being unable to capture climatic variations
t timescales longer than the proxy data resolution (gener-
lly 1 year in dendrochronology). Tree-ring series standardization

y Elsevier GmbH. All rights reserved.
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CPVP

Full Calibration Period

Proxy Series
(e.g. Tree ring)

Climate Series
(e.g. Temperature)

Time (e.g. year)

XVPXCP

Climatic reconstruction

Fig. 1. Schematic representation of the general calibration/verification procedure prior to computing a dendroclimatic reconstruction. Full Calibration Period (large rectangle)
defines the time over which proxy and instrumental data overlap, and the time which will optimally be used to compute the transfer function. Such period is divided into
two  sub-periods in order to test the performance of the relationship between proxy and instrumental data with independent data. Thus, the proxy/instrumental data
regression computed over the Calibration Period (CP, dashed-edged rectangle) is used to predict (arrow) climate over the Verification Period (VP, smaller continuous-edged
rectangle), and is thus validated against instrumental data. During Cross-Calibration–Verification, the same procedure is applied but the original Verification Period becomes
t e Cros
t  Perio
p

p
R
s
l

c
d
s
Q
t
a
M
T
w
p

t
m
s
p
o
c
s
r
a
p
i
i
m
c
o
1
t
c
r
t

C

(
t
t
r

o
o
i
m
o
b
P
u
t
p
t
F
t
d
i
t
o

t
t
s
(
1
t

r

w
o
a

R

a

C

w
s

he  Cross-Calibration Period (XCP), which is used to predict (arrow) climate over th
he  validation is performed, a transfer function is computed over the Full Calibration
ast  climate (grey arrow).

rocedures currently used in climate reconstructions, such as
egional Curve Standardization (RCS, Erlandsson, 1936) or the
ignal-free approach (Melvin and Briffa, 2008), seek to retain the
argest possible climate-related autocorrelation.

An important caveat in this respect is that autocorrelation may
omplicate any interpretation of statistical analyses. The high inci-
ence of spurious associations between highly autocorrelated time
eries was recognized already by early statisticians (Bartlett, 1935;
uenouille, 1952; Yule, 1926). Moreover, conventional methods

o estimate statistical significance (e.g. Henkel, 1976) may  be
nalytically intractable as their assumptions are not satisfied.
ore flexible bootstrap and Monte-Carlo techniques (Efron and

ibshirani, 1986) can often perform better than classical methods
ith special regard to climatic (von Storch and Zwiers, 1999) or
aleoclimatic (e.g. Mudelsee, 2003; Young et al., 2000) persistence.

This paper aims to quantify the effect of autocorrelation in
he statistics commonly used to assess the validity of dendrocli-

atic reconstructions. We  provide tests of significance for various
tatistics typically used in paleoclimatic calibration–verification
rocedures, namely Coefficient of Determination (R2), Coefficient
f Correlation (r2), Reduction of Error (RE), and Coefficient of Effi-
iency (CE). A combination of Monte-Carlo iterations and time
eries modelling in the frequency (Ebisuzaki, 1997) or tempo-
al domains (Burg, 1978) is used to simulate the influence of
utocorrelation in the statistical associations between the inde-
endent (proxy) and the dependent (observed climate) variables

n the calibration/verification procedures. In addition to overcom-
ng the problems related to autocorrelation, to our knowledge a

ethodology to perform tests of statistical significance for the
alibration–verification statistics commonly used in various types
f paleoclimatic studies (Briffa et al., 1988; Cook et al., 1994; Fritts,
976; Woodhouse, 1999) is provided for the first time. Finally,
he same approach is used to produce confidence intervals of the
limatic reconstruction, based on the temporal structure of the
esiduals of the transfer function. Software is provided to perform
he described analyses.

alibration and verification statistics

A paleoclimatic reconstruction is based on the transfer function
Please cite this article in press as: Macias-Fauria, M.,  et al., Persistence 
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Fritts, 1976), a model of the relationship between the proxy and
he instrumental data, applied to the proxy data for the reconstruc-
ion period. In most cases, this involves a simple or multiple linear
egression analysis, which is the focus of our study. The time span

o
o
r
r

s-Verification Period (XVP), and is again validated against instrumental data. Once
d which is applied to the proxy data beyond the instrumental record to reconstruct

ver which such relationship is modelled depends on the period
f common overlap between proxy and instrumental data, and
s called Full Calibration Period (Fig. 1). The quality of a paleocli-

atic calibration model is commonly tested using the Coefficient
f Determination (R2), which is defined as the squared correlation
etween the model and the predictand over the Full Calibration
eriod. However, the validity of the calibration should be tested
sing independent data not used in the training process. Hence,
he Full Calibration Period, which will ultimately be used to com-
ute the transfer function, is typically divided into two sub-periods,
he Calibration and Verification Periods (CP and VP, respectively;
ig. 1). The model parameters are optimized over CP and the predic-
ive skill is tested over VP. Verification of the model using withheld
ata is of special importance, as the comparison between the cal-

bration and verification statistics may reveal potential over-fit of
he calibration model or decreased sensitivity to climatic variations
ver the non-calibrated period.

A number of tests (verification statistics) are performed that aim
o check how well the values predicted by the calibration model fit
he observed values in the VP. Commonly these are Squared Pear-
on correlation (r2), Reduction of Error (RE), and Coefficient of Error
CE) (Briffa et al., 1988; Cook et al., 1994; Fritts, 1976; Woodhouse,
999). Pearson product-moment correlation coefficient between
wo series x and y consists of:

xy =
∑N

t=1(xt − x̄)(yt − ȳ)

(n − 1)SxSy
(1)

here N is the length of the time series, x̄ and ȳ are the mean value
f each time series, and sx and sy are their standard deviations. RE
nd CE are defined as follows:

E = 1.00 −
∑N

t=1(xt − x̂t)
2

∑N
t=1(xt − x̄c)2

(2)

nd

E = 1.00 −
∑N

t=1(xt − x̂t)
2

∑N
t=1(xt − x̄v)2

(3)

here xt is the observed climate in year t, x̂t is the predicted (recon-
tructed) climate in year t, and x̄c and x̄v are the arithmetic means
matters: Estimation of the statistical significance of paleoclimatic
nologia (2012), doi:10.1016/j.dendro.2011.08.003

f the actual climate over CP and VP, respectively. N is the number
f years in VP. In order to seek for further temporal stability of the
elationship between climatic and proxy data, this process can be
e-done by considering the old VP as a new CP, and the old CP as a

dx.doi.org/10.1016/j.dendro.2011.08.003
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ew VP: such a procedure is called Cross-Calibration–Verification
Fig. 1).

RE and CE are used to estimate the strength of the linear relation-
hip between the observed and reconstructed series. Their values
ange from 1 to −∞,  where the maximum value of 1indicates
erfect fit between observed and reconstructed time series. Impor-
antly, RE > 0 indicates that the reconstruction is better than the CP
verage. CE differs from RE only in that x̄c in Eq. (2) is replaced by
he mean of VP (x̄v) in Eq. (3).  CE is thus a more restrictive verifi-
ation statistic than RE, as it is a true measure of the variance in
ommon between the real and the estimated data over VP (Briffa
t al., 1988). Conventionally, >0 outcomes for RE and CE have been
nterpreted to mean that the reconstruction bears predictive skill
nd thus considered as acceptable without any further tests of sta-
istical significance (e.g. Briffa et al., 1988; Cook et al., 1994; Fritts,
976; Woodhouse, 1999). However, RE and CE should be inter-
reted cautiously if data contains high autocorrelation or trends
Cook et al., 1994).

ethods

This section describes the methodology employed to obtain
ests on the significance of the reconstruction statistics described
bove. A Monte-Carlo-based test of significance consists of the gen-
ration of surrogate (virtual) data in order to be able to produce an
mpirical probability density function (PDF) for a given statistic,
nd analysing where the value of the statistic we are interested in
ays within such distribution, hence, knowing its significance.

election of a model able to generate appropriate surrogate time
eries

The first step is to select a model able to reproduce surrogate
ata of the same characteristics as the original data. In our case, a
odel has to be chosen able to generate time series with the same

utocorrelation structure as the original normalized data. This
tudy used two approaches in this respect: a frequency-domain
nd a time-domain model.

The frequency-domain method (Ebisuzaki, 1997) aims to gener-
ate a number of random time series that keep the same power
spectrum as the original time series but with a random phase. It
basically consists of three steps: first, the discrete Fourier trans-
form is computed for the time series; second, a Fourier series
with random phases and the same power spectrum as the orig-
inal series is calculated; third, new synthetic series are obtained
by the inverse Fourier transform.
The time-domain method (Burg, 1978) is based on the application
of autoregressive (AR) models to the time series in order to sim-
ulate their autocorrelation structure. AR coefficients are directly
computed from the data by estimating the reflection coefficients
(partial autocorrelations) at successive orders. The model’s AR
coefficients are the harmonic mean of the forward and backward
partial autocorrelation estimates. Burg’s method minimizes the
forward and backward (least squares) prediction errors. In this
case, AR models will be computed for as many orders as we  define,
and thus, a best model (i.e. a best model order) for each time series
must be selected. To do so we used the Akaike Information Cri-
terion (AIC; Akaike, 1974). AIC trades off the complexity of an
estimated model (number of parameters) against how well the
Please cite this article in press as: Macias-Fauria, M.,  et al., Persistence m
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model fits the data. The preferred model is the one with the low-
est AIC value. In our study we used 30 as the default maximum
model order, and we found in no case the need for a higher model
order.
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In both approaches, the employed noise-generating algorithms
ssume normal distribution in the data (i.e. surrogate time series
ere calculated using normally distributed noise). Thus, the

arque–Bera statistic (JB statistic; Jarque and Bera, 1987) for nor-
ally distributed data was  calculated for each time series (original

nd surrogate). JB statistic is based on the sample Skewness and
urtosis of the time series.

onte-Carlo iterations

The chosen models were used to generate a number of sur-
ogate time series (autocorrelated noise series) with the same
utocorrelation as the original data. The statistics for the calibra-
ion/verification periods were then computed for each group of
urrogate time series. That is, in the case of 1000 Monte-Carlo itera-
ions, 1000 different R2 are calculated by default for the full periods,
s well as 1000 r2 for the calibration periods, and 1000 RE, CE, and
2 for the verification periods.

mpirical probability density functions

The empirical PDF of each statistic can then be calculated and,
ence, its significance for the single-tailed distribution. In the case
f 1000 Monte-Carlo iterations, the maximum degree of signifi-
ance that can be given is for p < 0.001. Minimum p-values will
epend on the number of Monte-Carlo iterations chosen (which
ill considerably change the computing time requirements), fol-

owing:

inimum p-value <
(

1
mccount

)
(4)

here mccount is the number of Monte-Carlo iterations.

econstruction and generation of confidence intervals

Using the same approach described above, the temporal struc-
ure of the residuals of the reconstruction regression (i.e. transfer
unction) can be used to calculate confidence intervals for the whole
econstructed period. The autocorrelation structure of the residuals
an be computed by either Burg’s or Ebizusaki’s approach, and sur-
ogate residuals obtained. When added to the regression estimates,
hey create intervals around the reconstruction which depict its
xpected error.

mpirical time series

ataset

A tree-ring width chronology made of living and sub-fossil Pinus
ylvestris (L.) from the forest limit of Finland and Norway (68–70◦N,
0–30◦E; period 752–1998 AD) was used to assess the performance
f the methods explained in the previous section (Fig. 2b; Helama
t al., 2009). The chronology was computed using the Regional
urve Standardization procedure (e.g. Briffa et al., 1992, 1996;
rlandsson, 1936; Fritts, 1976) and calibrated against Karasjok
northern Norway, 69◦28′N, 25◦31′E) July mean temperature for
he period 1876–1998.The corresponding transfer function for the
ormalized data is

t = −0.19xt−2 − 0.15xt−1 + 0.914xt − 0.1xt+1 + 0.142xt+2 (5)
atters: Estimation of the statistical significance of paleoclimatic
nologia (2012), doi:10.1016/j.dendro.2011.08.003

here Tt is July Karasjok temperature in year t and xt is tree-ring
ndex in year t.

As it is seen in the transfer function, predictors are clearly not
ndependent (i.e. they consist of a combination of the same time

dx.doi.org/10.1016/j.dendro.2011.08.003
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droclimatic reconstructions, towards positive values (Table 1).
This occurred together with a strong decrease in the peaked-
ness of the distribution (i.e. a less distinct and sharp mode); the
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Fig. 3. Correlograms of the Northern Lapland P. sylvestris ring width chronology
(Helama et al., 2009) for: black dashed line: residual chronology; black contin-
ig. 2. Northern Lapland ring-width chronology (as in Helama et al., 2009) for the pe
5◦31′E) for the period 1876–1998 (lower). (A) Residual (white noise) time series;
0-year spline time series. Note the increasing smoother lines from A to D, reflectin

eries with different lags). This is the case in many multiple regres-
ions to some degree. Dependence between predictors tends to
ive conservative significance estimates, as in practice the data has
ewer degrees of freedom than what we are testing against. Thus,
t does not represent a concern.

econstruction statistics as a function of persistence in the time
eries

In order to assess the influence of increasing autocorrelation
n calibration/verification statistics, 5 and 10-year cubic spline
moothing functions (Cook and Peters, 1981) were fit to the origi-
al (standard) time series. Further, residuals from a 15-year spline
t were taken to obtain largely non-autocorrelated time series
Fig. 2). Fig. 3 displays correlograms of the proxy chronology and
f its filtered counterparts. As expected, increased autocorrelation
oefficients appear with longer spline filters, affecting several auto-
orrelation orders.

100,000 Monte-Carlo iterations were performed in order to
aximize the robustness of our results and to generate enough

amples as to be able to clearly visualize the structure and shape of
he resulting empirical PDFs for each of the analysed statistics.

esults and discussion

mpirical probability density functions

We  discuss in this section the sensitivity of our methods to
ncreased autocorrelation in the time series, as well as the differ-
nces in the performance of Burg’s and Ebisuzaki’s approaches.
Please cite this article in press as: Macias-Fauria, M.,  et al., Persistence 

reconstruction statistics from autocorrelated time series. Dendrochro

hree statistics will be discussed, namely: RE, CE, and R2. The
oefficient of Determination (R2) is the square of the correlation
oefficient between the constructed predictor and the response
ariable: the analysis of the PDF of this statistic is thus analogous

u
r
1
p
t

52–1998 (upper) vs. summer temperature for Karasjok (northern Norway, 69◦28′N,
tandard time series (unfiltered in temperature); (C) 5-year spline time series; (D)
easing temporal autocorrelation.

o the analyses of the Pearson correlation statistic. Note that for R2

ll values are positive.
The PDFs (i.e. the distribution of values of statistics resulting

rom the Monte-Carlo iterations) from which the statistics’ sig-
ificances were computed were very sensitive to the degree of
utocorrelation in the time series (Fig. 4 and Table 1).

RE and CE: the range of PDF values expanded with increas-
ing autocorrelation in the series, especially to the left (negative
values), but also and importantly for assessing the quality of den-
matters: Estimation of the statistical significance of paleoclimatic
nologia (2012), doi:10.1016/j.dendro.2011.08.003

ous line: standard chronology; red continuous line: 5-year spline chronology;
ed dashed line: 10-year spline chronology. Autocorrelations are shown for up to
0-year lags, forward and backward. At lag zero, all correlations are 1. (For inter-
retation of the references to colour in this figure legend, the reader is referred to
he web  version of this article.)

dx.doi.org/10.1016/j.dendro.2011.08.003
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Table  1
Statistics of the empirical density distributions for a set of reconstruction statistics, namely: RE: Reduction of Error; CE: Coefficient of Efficiency; R2: squared Pearson
Correlation Coefficient computed for the full calibration period (i.e. 1876–1998). Distributions obtained after 100,000 Monte-Carlo iterations. Results are shown for Res:
residual  (white noise); Std: standard; Spl 5-yr: 5-year spline; and Spl 10-yr: 10-year spline series. A (upper block): time series modelled using Ebisuzaki’s approach; B (lower
block): time series modelled using Burg’s approach. Descriptor statistics of the distributions are: xmin: minimum value; xmax: maximum value; �x: range; x̄: arithmetic
mean; Md:  mode; x̃: median; s2: variance; s: standard deviation; � 1: Skewness. Data source: northern Lapland P. sylvestris ring-width chronology vs. summer temperature
for  Karasjok (northern Norway, 69◦28′N, 25◦31′E).

xmin xmax �x x̄ Md x̃ s2 s � 1

A
RE

Res −2.95 0.43 3.38 −0.12 −0.05 −0.09 0.03 0.18 −1.49
Std  −5.33 0.38 5.71 −0.22 −0.04 −0.13 0.11 0.34 −2.67
Spl  5-yr −35.47 0.67 36.13 −0.78 −0.09 −0.43 1.50 1.22 −4.16
Spl  10-yr −105.33 0.85 106.18 −1.82 −0.06 −0.86 10.76 3.28 −6.04

CE
Res  −2.96 0.43 3.39 −0.12 −0.05 −0.09 0.03 0.18 −1.50
Std −6.44  0.28 6.71 −0.34 −0.12 −0.23 0.15 0.38 −2.73
Spl  5-yr −45.73 0.52 46.25 −1.24 −0.29 −0.78 2.46 1.57 −4.29
Spl  10-yr −221.98 0.71 222.69 −3.18 −0.32 −1.76 22.85 4.78 −6.04

R2

Res 0.00 0.42 0.42 0.09 0.07 0.09 0.00 0.05 0.85
Std  0.00 0.29 0.29 0.08 0.06 0.07 0.00 0.04 0.68
Spl  5-yr 0.00 0.51 0.50 0.19 0.18 0.19 0.00 0.07 0.26
Spl  10-yr 0.01 0.77 0.76 0.35 0.36 0.35 0.01 0.11 −0.04

B
RE

Res  −3.32 0.33 3.65 −0.17 −0.08 −0.13 0.04 0.20 −1.73
Std  −5.82 0.39 6.21 −0.19 −0.07 −0.12 0.06 0.24 −3.32
Spl  5-yr −76.95 0.68 77.62 −0.85 −0.09 −0.48 1.67 1.29 −6.43
Spl  10-yr −230.56 0.88 231.44 −2.16 −0.19 −1.06 14.90 3.86 −8.79

CE
Res  −3.32 0.33 3.65 −0.18 −0.08 −0.13 0.04 0.20 −1.73
Std  −5.94 0.28 6.22 −0.23 −0.10 −0.16 0.06 0.25 −3.32
Spl  5-yr −86.23 0.52 86.74 −1.12 −0.25 −0.68 2.32 1.52 −6.20
Spl  10-yr −239.47 0.86 240.33 −3.15 −0.41 −1.69 25.18 5.02 −7.53

R2

Res 0.00 0.38 0.38 0.07 0.05 0.07 0.00 0.04 1.05
4 

4 

5 

T
S
(
1
i
s

Std 0.00  0.25 0.25 0.0
Spl  5-yr 0.00 0.56 0.56 0.1
Spl  10-yr 0.00 0.84 0.84 0.2

Skewness of the distributions largely shifted towards more neg-
ative values. Logically, these transformations were accompanied
by increases in the variances of the PDFs. The shift of the mode
Please cite this article in press as: Macias-Fauria, M.,  et al., Persistence m
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and median towards negative values slightly compensated the
increased spurious high values (longer and thicker distribution
tails) in the determination of significance thresholds, which was
insufficient in the RE statistic, very sensitive to autocorrelation.

able 2
ubset of reconstruction statistics and their 95% and 99% significance thresholds, namely: 

i.e.  1876–1998); RE: Reduction of Error; CE: Coefficient of Efficiency. Results are shown fo
0-year spline series. A (left block): time series modelled using Ebisuzaki’s approach; B (r

n  significance threshold values with increasing autocorrelation in the series. Significanc
ylvestris ring-width chronology vs. summer temperature for Karasjok (northern Norway

A 

Res Std Spl 5-yr Spl 10-y

R2 0.40 0.40 0.38 0.45 

R2 95% 0.19 0.14 0.31 0.53 

R2 99% 0.24 0.18 0.37 0.59 

RE  0.28 0.26 0.03 −0.06 

RE  95% 0.11 0.11 0.22 0.33 

RE  99% 0.18 0.18 0.36 0.52 

CE  0.28 0.24 −0.07 −0.26 

CE  95% 0.11 0.03 0.04 0.05 

CE  99% 0.18 0.10 0.20 0.33 

XRE 0.35  0.38 0.34 −0.19 

XRE  95% 0.11 0.11 0.22 0.33 

XRE  99% 0.19 0.18 0.35 0.52 

XCE 0.35  0.36 0.30 −0.33 

XCE  95% 0.11 0.03 0.04 0.05 

XCE  99% 0.19 0.10 0.19 0.32 
0.03 0.04 0.00 0.03 1.12
0.09 0.12 0.01 0.08 0.86
0.18 0.24 0.02 0.13 0.54

Table 2 shows the significances at p < 0.05 and p < 0.01 of the stud-
ied statistics. Whereas threshold values for RE did not change for
standard and residual time series, they increased with autocor-
atters: Estimation of the statistical significance of paleoclimatic
nologia (2012), doi:10.1016/j.dendro.2011.08.003

relation, being far from the traditional threshold value of 0. In
the case of CE, the overall shift towards negative values of the
whole distribution might have compensated the more dispersed
distribution and thus the larger occurrence of spurious values.

R2: squared Pearson Correlation Coefficient computed for the full calibration period
r Res: residual (white noise); Std: standard; Spl 5-yr: 5-year spline; and Spl 10-yr:
ight block): time series modelled using Burg’s approach. Note the overall increase
e thresholds computed after 100,000 iterations. Data source: northern Lapland P.
, 69◦28′N, 25◦31′E).

B

r Res Std Spl 5-yr Spl 10-yr

0.40 0.40 0.38 0.45
0.16 0.09 0.28 0.48
0.21 0.12 0.35 0.58
0.28 0.26 0.03 −0.06
0.06 0.04 0.12 0.20
0.14 0.09 0.29 0.45
0.28 0.24 −0.07 −0.26
0.06 0.01 0.00 −0.04
0.14 0.05 0.14 0.23
0.35 0.38 0.34 −0.19
0.06 0.03 0.12 0.19
0.14 0.09 0.28 0.44
0.35 0.36 0.30 −0.33
0.06 0.00 −0.01 −0.04
0.14 0.05 0.14 0.22
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Fig. 4. Empirical probability density functions resulting from 100,000 Monte Carlo iterations for Reduction of Error (upper row), Coefficient of Efficiency (middle row) and
squared Pearson Correlation Coefficient for the Full Calibration period (1876–1998 AD; lower row). Source data: northern Lapland P. sylvestris ring-width chronology vs.
summer temperature for Karasjok (northern Norway, 69◦28′N, 25◦31′E). Left and right columns show the distributions resulting from modelling the autocorrelation structure
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f  the original series using Ebisuzaki’s and Burg’s approaches, respectively. Black d
-year  spline series; red dashed line: 10-year spline series. (For interpretation of th
his  article.)

Threshold values remained close to 0 at all autocorrelation lev-
els for p < 0.05. Significance at p < 0.01 was much more sensitive
to increased autocorrelation, with threshold values jumping to
0.33 (Ebisuzaki’s) or 0.23 (Burg’s) for the 10-year spline dataset.
However, our data revealed a strong tendency towards smaller
and negative CE values with smoother filters, and thus CE values
were not significant with the 5 and 10-year spline time series.
R2: the range of the PDFs also increased. R2 PDFs were very
sensitive to increased autocorrelation: the distributions’ mean,
median, and mode shifted towards larger values, with the con-
sequent increase of spurious high Coefficients of Correlation
(Table 1 and Fig. 4). This resulted in higher measured R2 values
with the original data (0.4–0.45), but even higher significance
thresholds at both p < 0.05 and p < 0.01, such that when using
10-year splines the relationships between tree-ring index and
temperature were not significant.

bisuzaki’s vs. Burg’s approaches
Statistics’ PDFs and significance thresholds changed in the

ame qualitative way with increasing time series autocorrelation
or both Ebisuzaki’s and Burg’s method, in agreement with the
otion of a decrease in the number of independent observations
ith increasing serial correlation. However, Ebisuzaki’s approach

ffered a higher overall performance. Although surrogate time
eries appeared to be visually similar and successfully created using
oth methods (see Supplementary Figs. 1 and 2 for characteristic
urrogate time series), a closer inspection of their autocorrela-
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ion structure as compared to the original data revealed a much
igher performance of Ebisuzaki’s method (Fig. 5): Burg’s method
onsistently underestimated autocorrelation levels, especially at
igher orders, also creating models with a large degree of negative

u
(
t
u

 line: residual series; black continuous line: standard series; red continuous line:
rences to colour in this figure legend, the reader is referred to the web  version of

utocorrelation when modelling residual time series. This explains
he higher significance thresholds found in the Ebisuzaki method
ith highly autocorrelated data (Table 2) and the more sensible

esults of Ebisuzaki’s method with non autocorrelated time series
Fig. 4).

That is, Ebisuzaki’s approach generated surrogate time series
hich mimicked better the structure of the original input data

han Burg’s. This might be a consequence of the procedure cho-
en in order to select the best model order in the Burg’s method.
IC trades off parsimony and goodness of fit. That is, it penalizes
ver parametrization. This might result in the selection of lower
odel orders than needed in order to have the best possible fit to

he data, and thus in the ultimate generation of surrogate data with
ifferent persistence than the original one (Fig. 5).

Finally, Ebisuzaki’s model also offers faster computation times
han Burg’s method, which might be important when computing a
arge number of Monte Carlo iterations (i.e. >10,000) but insignifi-
ant if using a smaller but already reliable number of iterations (e.g.
000, that is, significance resolution at p < 0.001).

Overall, short time series and high persistence have a parallel
ffect on the statistics’ values and significances: they both decrease
he amount of independent observations in the data, increasing the
hance of spurious high statistic values.

econstruction confidence intervals

Fig. 6 shows the reconstruction of July Karasjok temperature
matters: Estimation of the statistical significance of paleoclimatic
nologia (2012), doi:10.1016/j.dendro.2011.08.003

sing the northern Lapland P. sylvestris ring-width chronology
Helama et al., 2009), and its 95% confidence intervals based on
he structure of the residuals of the transfer function computed
sing Ebizusaki’s method (Burg’s method results are shown in

dx.doi.org/10.1016/j.dendro.2011.08.003
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Fig. 5. Correlograms of the Northern Lapland P. sylvestris ring width chronology (black continuous line) and surrogate time series modelled following Ebisuzaki’s (red
continuous line) and Burg’s (black dashed line) approaches. (A) residual; (B) standard; (C) 5-year spline; (D) 10-year spline time series. Autocorrelations are shown for up to
10-year  lags, forward and backward. At lag zero, all correlations are 1. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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Fig. 6. Black continuous line: Karasjok (northern Norway, 69◦28′N, 25◦31′E) summer temperature reconstruction using Northern Lapland P. sylvestris ring-width chronology
(period 752–1998, as in Helama et al., 2009); red continuous line: instrumental data (period 1876–1998); grey shaded area: area within the 95% confidence interval of the
reconstruction using Ebisuzaki’s approach (see ‘Methods’ section for computation). (A) Residual (white noise) series; (B) standard series; (C) 5-year spline series; (D) 10-year
spline  series. Note the increasing autocorrelation from A to D. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of  this article.)
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Table 3
Statistics of the empirical density distributions of the reconstruction residuals of the Karasjok summer temperature reconstruction over the period 752–1998 AD. Results
are  shown for Res: residual (white noise); Std: standard; Spl 5-yr: 5-year spline; and Spl 10-yr: 10-year spline series. A (upper block): time series modelled using Ebisuzaki’s
approach; B (lower block): time series modelled using Burg’s approach. Distributions obtained after 100,000 Monte-Carlo iterations. Descriptor statistics of the distributions
are:  xmin: minimum value; xmax: maximum value; �x: range; x̄: arithmetic mean; Md:  mode; x̃: median; s2: variance; s: standard deviation; � 1: Skewness; � 2: Kurtosis.
Data  source: northern Lapland P. sylvestris ring-width chronology vs. summer temperature for Karasjok (northern Norway, 69◦28′N, 25◦31′E).

xmin xmax �x x̄ Md x̃ s2 s � 1 � 2

A
Res −4.31 5.07 9.38 0.01 0.08 0.00 0.80 0.90 0.04 3.44
Std  6.74 18.85 12.11 12.80 13.05 12.77 1.14 1.07 0.22 3.64
Spl  5-yr 9.28 17.04 7.76 12.81 12.73 12.80 0.52 0.72 0.23 3.51
Spl  10-yr 10.06 16.15 6.09 12.79 12.76 12.77 0.38 0.61 0.28 3.47

B
Res −4.53  5.23 9.76 0.01 0.09 0.00 0.81 0.90 0.04 3.46
Std  6.18 19.23 13.05 12.80 12.89 12.77 1.17 1.08 0.21 3.64

1
1

S
u
(
g
a
t
t

a
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c
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r
(

Spl  5-yr 9.21 17.24 8.02 12.81 

Spl  10-yr 9.98 16.17 6.20 12.79 

upplementary Fig. 3). The statistics of the confidence interval val-
es (Table 3) show smaller ranges with increasing autocorrelation
from standard to 10-year spline series), in accordance with pro-
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ressively smoother series. Most importantly, the mean, median
nd mode of the distributions are very close to each other, consis-
ent with the idea of the residuals being equally distributed around
he reconstructed values. Further, Skewness values close to zero
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ig. 7. Empirical probability density functions for the modelled residuals of the reconstru
orthern Lapland P. sylvestris ring-width chronology (period 752–1998, as in Helama et 

ight  column: residual time series modelled using Burg’s approach (see ‘Methods’ section 

C)  5-year spline; (D) 10-year spline time series.
2.78 12.80 0.54 0.74 0.20 3.48
2.77 12.78 0.39 0.62 0.25 3.41

nd Kurtosis values close to 3 for all types of series and for both
bisuzaki’s and Burg’s methods indicate a distribution of errors
lose to normal and robust regarding the degree of autocorrela-
matters: Estimation of the statistical significance of paleoclimatic
nologia (2012), doi:10.1016/j.dendro.2011.08.003

ion present in the original time series used in the reconstruction
Fig. 7). In any case, and as seen in the previous section, Ebisuzaki’s
pproach will outperform Burg’s method in modelling the structure
f the residual series and is thus recommended in this step too.
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ction of Karasjok (northern Norway, 69◦28′N, 25◦31′E) summer temperature using
al., 2009). Left column: residual time series modelled using Ebisuzaki’s approach;
for description). Reconstructions based on: (A) residual (white noise); (B) standard;
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M. Macias-Fauria et al. / Dend

onclusions and significance

. We  present a simple method that enables a robust calcula-
tion of the value and significance of climatic or environmental
reconstruction statistics, as well as reconstructions’ confidence
intervals, taking into account autocorrelation within time series,
and based on a combination of time series modelling and Monte-
Carlo iterations.

. Highly autocorrelated time series show an increased occurrence
of relatively high but spurious RE and R2 values. CE is a more
robust statistic, but shows the same limitations at higher sig-
nificances (i.e. p < 0.01). Threshold values of 0 for RE and CE,
traditionally used to distinguish between successful and unsuc-
cessful reconstructions, are not necessarily valid and depend on
the temporal structure of the time series analysed.

. Ebisuzaki’s (frequency domain) outperformed Burg’s (time
domain) method by better mimicking the original structure of
the modelled time series and it is thus the recommended proce-
dure.

. Burg’s approach limitations may  reflect goodness of fit being
more important than over parametrization in the area of statisti-
cal inference. Model selection by a method other than AIC might
improve its performance. In any case, and due to limited testing,
we encourage testing both methods by anyone attempting the
method with other proxy data.

. Confidence intervals for the reconstruction based on the tem-
poral structure of the residuals of the transfer function were
successfully created and showed robustness as related to varying
levels of autocorrelation level in the original time series.

. The same procedure has been successfully tested on proxy time
series of different nature (e.g. plant phenological time series
and schlerochronologies; Helama et al., 2010; Holopainen et al.,
2006).

. We  offer a Matlab-based program with a user inter-
face which allows the user to perform such analyses, as
well as a Windows executable file for non-Matlab users.
Please visit the following webpage to freely download it:
http://oxlel.zoo.ox.ac.uk/reconstats.
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